Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Poult Sci ; 103(6): 103674, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38583309

RESUMO

Microplastics biological toxicity, environmental persistence and biological chemicals have been paid widespread attention. Microplastics exposed to chicken spleen injury of the specific mechanism is unclear. Thus, we randomly assigned chickens to 4 groups: C (normal diet), L-MPs (1 mg/L), M-MPs (10 mg/L), and H-MPs (100 mg/L), and assessed spleen damage after 42 d of exposure. Morphologically, the boundary between the red and white pulp of the spleen was blurred, along with the expansion of the white pulp. It was further speculated that microplastics induced mitochondrial dynamic homeostasis (Drp1 upgraded, Mfn1, Mfn2, and OPA1 reduced), and provoked the mitochondrial apoptotic pathway (Bcl-2/Bax decreased, cytc, caspase3, and caspase9 raised), resulting in redox imbalance and lipid peroxide accumulation (MDA increased, CAT, GSH, and T-AOC plummeted), and further stimulated ferroptosis (FTH1, GPX4, and SLC7A11 decreased). Here we explored the impact of polystyrene microplastics on the spleen, as well as the programmed death (apoptosis and ferroptosis) involved, and the regulative role of mitochondria in this process. This could be of significant importance in bridging the gap in laboratory research on microplastics-induced spleen injury in chicken.

2.
J Zhejiang Univ Sci B ; 25(3): 233-243, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453637

RESUMO

Microplastics (MPs) have attracted growing attention worldwide as an increasingly prevalent environmental pollutant. In addition, chicken meat is currently the most widely consumed kind of poultry in the global market. Consumer demand for chicken is on the rise both at home and abroad. As a result, the safety of chicken raising has also received significant attention. The lungs play an essential role in the physiological activities of chickens, and they are also the most vulnerable organs. Lung injury is difficult to repair after the accumulation of contaminants, and the mortality rate is high, which brings huge economic losses to farmers. The research on the toxicity of MPs has mainly focused on the marine ecosystem, while the mechanisms of toxicity and lung damage in chickens have been poorly studied. Thus, this study explored the effects of exposure to polystyrene microplastics (PS-MPs) at various concentrations for 42 d on chicken lungs. PS-MPs could cause lung pathologies and ultrastructural abnormalities, such as endoplasmic reticulum (ER) swelling, inflammatory cell infiltration, chromatin agglutination, and plasma membrane rupture. Simultaneously, PS-MPs increased the expression of genes related to the heat shock protein family (Hsp60, Hsp70, and Hsp90), ER stress signaling (activating transcription factor 6 (ATF6), ATF4, protein kinase RNA-like ER kinase (PERK), and eukaryotic translation initiation factor 2 subunit α (eIF2α)), pyroptosis-related genes (NOD-|, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin-1ß (IL-1ß), cysteinyl aspartate-specific proteinase 1 (Caspase1), and gasdermin-D (GSDMD)), and the inflammatory signaling pathway (nuclear factor-|κB (NF-|κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)). The above results showed that PS-MP exposure could result in lung stress, ER stress, pyroptosis, and inflammation in broilers. Our findings provide new scientific clues for further research on the mechanisms of physical health and toxicology regarding MPs.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia , Animais , Galinhas , Ecossistema , Estresse do Retículo Endoplasmático , Inflamassomos/metabolismo , Microplásticos/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Poliestirenos/toxicidade
3.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458672

RESUMO

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Assuntos
Galinhas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Toluidinas , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Galinhas/metabolismo , NF-kappa B/metabolismo , Inflamação , Suplementos Nutricionais , Íleo/metabolismo , Ácidos Graxos Insaturados/uso terapêutico
4.
Toxicology ; 501: 153688, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036095

RESUMO

Fluorosis poses a significant threat to human and animal health and is an urgent public safety concern in various countries. Subchronic exposure to fluoride has the potential to result in pathological damage to the heart, but its potential mechanism requires further investigation. This study investigated the effects of long-term exposure to sodium fluoride (0, 500, 1000, and 2000 mg/kg) on the hearts of chickens were investigated. The results showed that an elevated exposure dose of sodium fluoride led to congested cardiac tissue and disrupted myofiber organisation. Sodium fluoride exposure activated the ERS pathways of PERK, IRE1, and ATF6, increasing HSP60 and HSP70 and decreasing HSP90. The NF-κB pathway and the activation of TNF-α and iNOS elicited an inflammatory response. BAX, cytc, and cleaved-caspase3 were increased, triggering apoptosis and leading to cardiac injury. The abnormal expression of HSP90 and HSP70 affected the stability and function of RIPK1, RIPK3, and MLKL, which are crucial necroptosis markers. HSPs inhibited TNF-α-mediated necroptosis and apoptosis of the death receptor pathway. Sodium fluoride resulted in heart injury in chickens because of the ERS and variations in HSPs, inducing inflammation and apoptosis. Cardiac-adapted HSPs impeded the activation of necroptosis. This paper may provide a reference for examining the potential cardiotoxic effects of sodium fluoride.


Assuntos
Fluoretos , Proteínas de Choque Térmico , Animais , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Fluoretos/toxicidade , Galinhas/metabolismo , Fluoreto de Sódio/toxicidade , Cardiotoxicidade , Fator de Necrose Tumoral alfa , Proteínas de Choque Térmico HSP70 , Apoptose , Proteínas de Choque Térmico HSP90 , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/farmacologia
5.
Environ Toxicol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064284

RESUMO

Microplastics (MPs) have attracted widespread worldwide attention as a new pollutant. However, the role of reactive oxygen species (ROS) and cell cycle in nephrotoxicity induced by different concentrations of polystyrene microplastics (PS-MPs) is unknown. This study used grass carp kidney cells (CIK) treated with different concentrations of PS-MPs (0, 0.012, 0.0625, and 0.5 mg L-1 ) as subjects. With the increase of PS-MPs concentration, the levels of ROS and malonaldehyde increased, while the level of total antioxidant capacity, superoxide Dismutase (SOD), and glutathione (GSH) activity decreased. The expression of BUB1 mitotic checkpoint serine/threonine kinase (BUB1), cyclin-dependent kinase (CDK1), CDK2, CyclinB1, cell division cycle 20 homolog (CDC20), and B-cell lymphoma-2, sequestosome 1 decreased significantly. Nevertheless, the expression of Caspase 3, Cleave-Caspase 3, cytochrome c (Cytc), BCL2-associated X, apoptosis regulator, poly ADP-ribose polymerase (PARP), Cleave-PARP, Caspase 9, autophagy immunoblot kit (LC3), and Beclin1 increased. Our research shows that PS-MPs can trigger oxidative stress and induce cell cycle arrest, apoptosis, and autophagy in CIK cells by regulating ROS. This work provides a theoretical basis for cellular biology and toxicology mechanisms and new insights into the potential risks to animals from MPs exposure in the environment.

6.
Aquat Toxicol ; 265: 106760, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977013

RESUMO

The incorrect use of antibiotics and pesticides poses significant risks of biological toxicity. Their simultaneous exposure could jeopardize fish health and hinder sustainable aquaculture. Here, we subjected grass carp to waterborne cypermethrin (0.65 µg/L) or/and sulfamethoxazole (0.30 µg/L) treatments for a duration of 6 weeks. We closely monitored the effects on intestinal function, the intestinal microbiome, and the liver metabolome. The results revealed that exposure to waterborne cypermethrin or/and sulfamethoxazole compromised intestinal barrier function and decreased the expression of intestinal tight junction proteins. Additionally, heightened levels of pro-inflammatory cytokines in the intestines and reduced antioxidant levels indicated systemic inflammation and oxidative stress, with more severe effects observed in the combined exposure group. 16S rRNA sequencing of intestinal tissues suggested Firmicutes play a key role in the intestinal microbiota. GC/MS metabolomics of the liver showed more differential metabolites (56) in the co-exposure group compared to cypermethrin (45) or sulfamethoxazole (32) alone, indicating greater toxicological effects with combined exposure. Our analyses also suggest that ATP-binding cassette transporters could serve as a novel endpoint for assessing the risk of pesticide and antibiotic mixtures in grass carp. In summary, this study underscores the potential ecological risks posed by antibiotics and pesticides to aquatic environments and products. It emphasizes the importance of the gut-liver axis as a comprehensive pathway for assessing the toxicity in fish exposed to environmental contaminants.


Assuntos
Carpas , Microbioma Gastrointestinal , Praguicidas , Poluentes Químicos da Água , Animais , Sulfametoxazol/toxicidade , RNA Ribossômico 16S , Poluentes Químicos da Água/toxicidade , Fígado , Antibacterianos/toxicidade , Praguicidas/farmacologia
7.
Environ Toxicol Pharmacol ; 100: 104136, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127111

RESUMO

Microplastics (MPs) are a hot environmental contaminant now. However, researchers paid little attention to their effects on immune organs such as the thymus. Here, we exposed chickens to a concentration gradient of polystyrene microplastics (PS-MPs) and then followed the decrease in the thymus index. HE staining showed cellular infiltration in the thymus. The assay kit corroborated that PS-MPs impelled oxidative stress in the thymus: increased MDA levels, downregulated antioxidants such as SOD, CAT, and GSH, and significantly undermined total antioxidant capacity. Western blotting and qRT-PCR results showed that Nrf2/NF-κB, Bcl-2/Bax, and AKT signaling pathways were activated in the thymus after exposure to PS-MPs. It stimulated the increased expression of downstream such as IL-1ß, caspase-3, and Beclin1, triggering thymus inflammation, apoptosis, and autophagy. This study provides new insights into the field of microplastic immunotoxicity and highlights potential environmental hazards in poultry farming.


Assuntos
Microplásticos , NF-kappa B , Animais , NF-kappa B/metabolismo , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Galinhas , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Apoptose
8.
Environ Pollut ; 331(Pt 1): 121847, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209896

RESUMO

Endemic fluorosis (EF) has been listed as one of the serious public health problems in many countries. Long-term exposure to high fluoride can lead to severe neuropathological damage to the brain. Although long-term research has revealed the mechanism of some brain inflammation caused by excessive fluoride, the role of intercellular interactions, especially immune cells, in brain damage is still unclear. Fluoride can induce ferroptosis and inflammation in the brain in our study. A co-culture system of neutrophil extranets and primary neuronal cells showed that fluoride can aggravate neuronal cell inflammation by causing neutrophil extranets (NETs). In terms of the mechanism of action, we found that fluoride leads to the opening of calcium ion channels by causing neutrophil calcium imbalance, which in turn leads to the opening of L-type calcium ion channels (LTCC). Extracellular free iron enters the cell from the open LTCC, leading to neutrophil ferroptosis, which releases NETs. Blocking LTCC (nifedipine) rescued neutrophil ferroptosis and reduced the generation of NETs. Inhibition of ferroptosis (Fer-1) did not block cellular calcium imbalance. In summary, our study explores the role of NETs in fluoride-induced brain inflammation and suggests that blocking calcium channels may be one of the possibilities to rescue fluoride-induced ferroptosis.


Assuntos
Encefalite , Armadilhas Extracelulares , Ferroptose , Humanos , Neutrófilos , Fluoretos , Cálcio/metabolismo , Inflamação/induzido quimicamente , Homeostase , Canais de Cálcio
9.
J Hazard Mater ; 452: 131236, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958159

RESUMO

Microplastics (MPs), a new and increasing environmental pollutant, can cause ongoing damage to organisms. Although recent studies have revealed mechanisms of action for some of the hepatotoxicity caused by MPs, the role-played by cellular interactions, particularly immune cells, in the process of liver injury has not been elucidated. In the present study, 5-µm polystyrene microplastics (PS-MPs) induced liver inflammation as well as the formation of Macrophage extracellular traps (METs). Macrophage and LMH cell co-culture systems confirmed that PS-MPs-induced METs promote inflammation in hepatocytes. Mechanistically, macrophages actively phagocytose particles after 4 h of exposure to PS-MPs. Subsequently PS-MPs elevated ROS levels and disrupt mitochondrial kinetic homeostasis. Further activation of mitochondrial autophagy and lysosomes. After phagocytosis of PS-MPs by macrophages for 12 h, continued autophagy and lysosome activation eventually lead to lysosome rupture and release of calcium ions to induce the formation of METs. Blocking ROS (NAC) and autophagy (3MA) partially alleviated mitochondrial and lysosomal damage and thus inhibited the formation of METs induced by PS-MPs. NAC also delayed the onset of respiratory burst to alleviate METs formation. In conclusion, our study reveals the mechanism of METs formation in liver inflammation induced by PS-MPs exposure and suggests that lysosomal damage may be one of the key players in the formation of METs induced by PS-MPs.


Assuntos
Armadilhas Extracelulares , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio , Macrófagos , Inflamação/induzido quimicamente , Fígado
10.
Environ Toxicol ; 38(1): 78-89, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36205374

RESUMO

Microplastics (MPs) seriously pollute and potentially threaten human health. Birds are sentinels of environmental pollutants, which respond quickly to contamination events and reveal current environmental exposure. Therefore, birds are good bioindicators for monitoring environmental pollutants. However, the mechanism of lung injury in birds and the role of the PTEN/PI3K/AKT axis are unknown. In this study, broilers treated with different polystyrene microplastics (PS-MPs) (0, 1, 10, and 100 mg/L) were exposed to drinking water for 6 weeks to analyze the effect of PS-MPs on lung injury of broilers. The results showed that with the increase of PS-MPs concentration, malonaldehyde (MDA) content increased, and catalase (CAT) and glutathione (GSH) activity decreased, further leading to oxidative stress. PS-MPs caused the PI3K/Akt/mTOR pathway to be inhibited by phosphorylation, and autophagy accelerated formation (LC3) and degradation (p62), causing autophagy. In PS-MPs exposed lung tissues, the expression of Bax/Bcl-2 and Caspase family increased, and MAPK signaling pathways (p38, ERK, and JNK) showed an increase in phosphorylation level, thus leading to cell apoptosis. Our research showed that PS-MPs could activate the antioxidant system. The antioxidant system unbalance-regulated Caspase family, and PTEN/PI3K/AKT pathways initiated apoptosis and autophagy, which in turn led to lung tissue damage in chickens. These results are of great significance to the toxicological study of PS-MPs and the protection of the ecosystem.


Assuntos
Poluentes Ambientais , Lesão Pulmonar , Animais , Humanos , Microplásticos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Poliestirenos/toxicidade , Plásticos/farmacologia , Antioxidantes/farmacologia , Galinhas/metabolismo , Ecossistema , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apoptose , Pulmão/metabolismo , Caspases , Poluentes Ambientais/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-36455829

RESUMO

Fluoride (F) is an environmental pollutant that continues to threaten human health. Long-term or excessive fluoride exposure can cause a series of acute or chronic systemic and organ-specific diseases. The liver is considered to be one of the important target organs of fluoride poisoning, however, the specific cause of liver damage caused by fluoride is still unclear. In the present study, we identified ferroptosis as a key mechanism of fluoride-induced liver injury. Under fluorosis conditions, lipid peroxidation levels in the liver are significantly increased and iron overload is induced. Combined transcriptomic and metabolomic analysis revealed that activation of the SIRT1/FOXOs pathway is one of the main causes of fluorosis-induced liver damage. Further analysis by in vitro experiments showed that the SIRT1/FOXOs pathway can cause the activation of the Nrf2/HO-1 pathway under the condition of fluorosis, and can activate the P53-dependent ferroptosis pathway, leading to the occurrence of lipid peroxidation and iron accumulation, ultimately leading to ferroptosis. Our study provides insight into the mechanism of fluoride-induced liver injury, and our results also provide strategies for treatment to alleviate liver injury caused by fluorosis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Fluoretos , Fluoretos/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais
12.
J Adv Res ; 52: 3-18, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334886

RESUMO

INTRODUCTION: Microplastic pollution seriously threatens the health and safety of humans and wildlife. Avian is one of the main species endangered by microplastics. However, the damage mechanism of microplastics to the digestive system of avian is not clear. OBJECTIVES: The gut-liver axis is a bidirectional channel that regulates the exchange of information between the gut and the liver and is also a key target for tissue damage caused by pollutants. This study aimed to elucidate the digestive toxicity of microplastics in avian and the key role of the gut-liver axis in it. METHODS: We constructed an exposure model for microplastics in environmental concentrations and toxicological concentrations in chickens and reveal the digestive toxicity of polystyrene microplastics (PS-MPs) in avian by 16S rRNA, transcriptomics and metabolomics. RESULTS: PS-MPs changed the death mode from apoptosis to necrosis and pyroptosis by upregulating Caspase 8, disrupting the intestinal vascular barrier, disturbing the intestinal flora and promoting the accumulation of lipopolysaccharide. Harmful flora and metabolites were translocated to the liver through the liver-gut axis, eliciting hepatic immune responses and promoting hepatic lipid metabolism disorders and apoptosis. Liver injury involves multiple molecular effects of mitochondrial dynamics disturbance, oxidative stress, endoplasmic reticulum stress, and cell cycle disturbance. Furthermore, metabolomics suggested that caffeine and melanin metabolites may be potential natural resistance substances for microplastics. CONCLUSION: Taken together, our data demonstrate the digestive damage of PS-MPs in avian, revealing a critical role of the liver-gut axis in it. This will provide a reference for protecting the safety of avian populations.


Assuntos
Microplásticos , Poliestirenos , Humanos , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Galinhas , Multiômica , RNA Ribossômico 16S/genética , Fígado
13.
Chem Biol Interact ; 367: 110180, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113630

RESUMO

Unlike regular environmental pollutants, microplastics cannot dissolve in liquids. Physical contact of microplastic (MPs) with tissue can damage tissue structure, and it is unclear how this physical secondary injury affects brain tissue. Through CTD database analysis, it was determined that cerebral ischemia may be one of the main ways of brain tissue damage caused by MPs, and inflammatory response may play a key role in it. In the present study, PS-MPs (L-PS group:1 mg/L, M - PS group:10 mg/L, H-PS group: 100 mg/L in water) were assessed to brain tissue damage in chicken after six weeks of continuous exposure. Exposure to PS-MPs caused cerebral hemorrhage as well as generation of microthrombi and loss of Purkinje cells. Intracerebral hemorrhage caused a strong infiltration of inflammatory cells and activated the ASC-NLRP3-GSDMD signaling pathway to induce pyroptosis. Disruption of mitochondrial dynamics by PS-MPs exposure disrupts mitochondrial function and activates AMPK signaling. In conclusion, this study explored the mechanism regulation of subsequent brain injury from the perspective of physical injury (cerebral hemorrhage) of PS-MPs. To provide a reference for elucidating the neurotoxicity induced by microplastic exposure.


Assuntos
Lesões Encefálicas , Poluentes Ambientais , Poluentes Químicos da Água , Proteínas Quinases Ativadas por AMP , Hemorragia Cerebral/induzido quimicamente , Humanos , Inflamação/induzido quimicamente , Microplásticos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plásticos , Poliestirenos/toxicidade , Piroptose , Água , Poluentes Químicos da Água/toxicidade
14.
Environ Pollut ; 311: 119963, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973452

RESUMO

In complex ecosystems, birds are generally long-lived and occupy high trophic positions, making them good bioindicators for monitoring environmental contaminants. The effects of microplastics (MPs) on myocardial development in bird is currently unknown. Chicks, as a high trophic level terrestrial bird, may be more affected by MPs exposure and. Therefore, we established an in vivo model of chicks exposed to different concentrations of polystyrene microplastics (PS-MPs) and selected 12-day-old chicken embryos in vitro to extract primary cardiomyocytes to further investigate the potential molecular mechanisms of the effect of PS-MPs on myocardial development in birds. Histopathological observations revealed that the PS-MPs treated exhibited loose and irregular myocardial arrangement, large cell gaps and broken myocardial fiber bundles. More mechanistically, TnnT2, Nkx2-5, Gata4, TBX5 and ACTN2 were down-regulated, endoplasmic reticulum (ER) stress markers GRP78, PERK, eIF2α, IRE1, ATF4, ATF6 and CHOP were overexpressed, autophagy-related genes LC3, ATG5, Beclin1 and P62 were down-expressed after PS-MPs exposure, and the addition of 4PBA effectively deregulated the above aberrant expression. Hence, our report indicated that PS-MPs induced myocardial dysplasia in birds is mainly attributed to the ER stress-mediated autophagic pathway. This provided data supporting the protection of birds from the health risks of MPs pollution. More critically, the study of cardiac developmental toxicity in birds may help to better explain or solve the problem of MPs pollution in complex ecosystems.


Assuntos
Microplásticos , Poliestirenos , Animais , Autofagia , Embrião de Galinha , Galinhas , Ecossistema , Estresse do Retículo Endoplasmático , Microplásticos/toxicidade , Plásticos/farmacologia , Poliestirenos/toxicidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-36007826

RESUMO

Microplastics (MPs) are a new type of pollutants that are widespread in nature, and their toxic effects on humans or animals are receiving attention. Birds are in a higher ecological niche in nature, and MPs may have potential bioaccumulation and biomagnification risks to birds. The mechanisms underlying the reproductive toxicity of MPs to birds are mainly unknown. To study the reproductive toxicity of MPs to birds, we randomly divided chickens into six groups and exposed polystyrene microplastics (PS-MPs) through drinking water (0, 1, and 100 mg/L) for 28 and 42 days. We found that PS-MPs caused testicular inflammatory infiltration and interstitial hemorrhage, resulting in testicular tissue damage; the expression of Claudin3 and Occludin in the blood-testis barrier (BTB) decreased and may damage the integrity of the BTB. PS-MPs exposure inhibited the expression of the Nrf2-Keap1 pathway, which in turn reduced HO-1 and NQO1, simultaneous GSH and T-AOC were also reduced, resulting in an imbalance of the redox system; in addition, the NF-κB signaling pathway was activated, increasing the expression of TNF-α, COX-2 and iNOS. Under redox system imbalance and inflammatory stress, exposure to PS-MPs led to decreased expression of Bcl-2 and increased Bax, cytc, caspase-8, and caspase-3, etc., activating apoptosis, and ultimately causing testicular damage. These results suggested that PS-MPs exposure led to an imbalance of the redox system and an inflammatory response, inducing both endogenous and exogenous apoptosis, resulting in testicular tissue damage. Our study provides a theoretical basis for reproductive injury mechanisms in chicken.


Assuntos
Água Potável , Poluentes Ambientais , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Galinhas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Água Potável/metabolismo , Poluentes Ambientais/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Microplásticos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Estresse Oxidativo , Plásticos , Poliestirenos/toxicidade , Testículo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Toxicology ; 478: 153296, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36029908

RESUMO

Microplastics (MPs) are a novel environment pollutant widespread among the natural environment, also causing damage to aquatic animals and mammals. However, their effects on the kidney of poultry are still unclear. In this study, chickens were exposure to the different doses of PS-MPs (1, 10, 100 mg/L) for six weeks, with 1 mg/L being the environmental concentration. The effects of PS-MPs on renal tissue damage in chicken were analyzed. Our results suggested that MPs exposure causes mitochondrial morphology and dysbiosis (MFN1/2, OPA1, Drp1), mitochondrial structural damage by triggering imbalance in mitochondrial dynamics. Antioxidant enzyme (SOD, CAT, MDA, GSH, T-AOC) activity was significantly altered, which in turn caused oxidative stress. H&E staining results showed damage and inflammation of chicken kidney. Mechanistically, the inflammation featured by activated NF-κB P65 and increased expression of pro-inflammatory factors (TNFα, iNOs, IL-1ß and IL-6). Moreover, PS-MPs intake induced necroptosis through activated RIP1/RIP3/MLKL signaling pathway. In conclusion, our study was the first to show that oral intake of PS-MPs induced inflammation and necroptosis in chicken kidney and the differences in damage were linked to the concentration of PS-MPs. The purpose of this study provided theoretical support for the environmental risk assessment of PS-MPs.


Assuntos
Microplásticos , Necroptose , Animais , Galinhas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Rim , Mamíferos/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Plásticos/metabolismo , Plásticos/farmacologia , Poliestirenos/farmacologia
17.
Sci Total Environ ; 840: 156727, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35714743

RESUMO

Microplastics (MPs) pollution is getting increasingly prominent, and its dangers have attracted widespread attention. The heart is the central hub of the organism's survival, and the mechanism of MPs-induced heart injury in chickens is unknown. Here, we investigated the effects of 5 µm polystyrene microplastics (PS-MPs) on the heart and primary cardiomyocytes of chickens at varied concentrations. We observed that PS-MPs caused severe pathological damage and ultrastructural changes in heart, induced myocardial pyroptosis, inflammatory cell infiltration and mitochondrial lesions. PS-MPs evoked abnormal antioxidant enzyme content and ROS overproduction. Detailed mechanistic investigation indicated that PS-MPs triggered pyroptosis via NF-κB-NLRP3-GSDMD axis and exacerbated myocardial inflammation (NLRP3, Caspase-1, IL-1ß, IL-18, ASC, GSDMD, NF-κB, COX-2, iNOS and IL-6 overexpression). Additionally, PS-MPs induced mitochondrial damage (TFAM, OPA1, MFN1 and MFN2 down-expression, DRP1 and Fis1 overexpression) and energy metabolism disorders (HK2, PKM2, PDHX and LDH up-regulation) by inhibiting AMPK-PGC-1α pathway. Interestingly, NAC alleviated these aberrant manifestations in vitro. We suggested that PS-MPs driven alterations in NF-κB-NLRP3-GSDMD and AMPK-PGC-1α pathways via ROS overload, which in turn triggered oxidative stress, myocardial pyroptosis, inflammation, mitochondrial and energy metabolism dysfunction. This provided theoretical bases for protecting chickens from toxic injury by MPs.


Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cardiotoxicidade , Galinhas/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Microplásticos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plásticos , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Fish Shellfish Immunol ; 123: 348-357, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35314330

RESUMO

Freshwater environmental antibiotic pollution is becoming more severe because of the irregular use of sulfonamide antibiotics. Sulfamethoxazole (SMZ) is a kind of antibiotic that can cause harm to the urinary systems of organisms. However, the toxic impacts of environment-related concentrations of antibiotics in fish have not been thoroughly studied. Lycopene (LYC) has the property of alleviating antibiotic toxicity by diminishing oxidative stress and inflammation. This investigation is intended to examine the instrument of the mitigative part of LYC on SMZ-caused renal inflammatory injury in grass carp. Grass carp were born with SMZ (0. 3 µg L-1) and LYC (10 mg/kg body weight) for 30 days. Serum was used to measure creatinine (CREA) and urea nitrogen (BUN) contents; what is more, kidneys were used to measure histological structure, oxidative stress indicators, relative expressions of cytokines, and inflammatory factors. We found that SMZ exposure significantly increased oxidative stress, characterized by decreased catalase activity (CAT) and superoxide dismutase (SOD). In addition, inflammation-related factors: interleukin (IL-18, IL-6, and IL-1ß), an apoptotic speck-containing protein with a card (ASC), NOD-like receptor protein3 (NLRP3), cysteinyl aspartate specific proteinase-1 (caspase-1), tumor necrosis factor-α (TNF-α), and nuclear factor-activated B cells (NF-κB) expression increased significantly contrasted with those control group. Inflammatory reactions and ultrastructural changes accompany. LYC administration alleviated the changes mentioned above. In conclusion, In conclusion, these results suggest a protective effect of LYC dietary supplements against kidney damage caused by SMZ. LYC is expected to prevent and treat oxidative stress and chronic inflammation caused by antibiotics as a critical component in the fish breeding diet.


Assuntos
Carpas , Animais , Antibacterianos , Carpas/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Rim/metabolismo , Licopeno/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR , Sulfametoxazol
19.
Am J Cancer Res ; 12(1): 265-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141017

RESUMO

There are numerous antibodies used for cancer therapy in clinic, but they are essentially less efficacy than expected. None of them has tumor-specific and broad-spectral properties. PIWIL2-like (PL2L) protein 60 (PL2L60) is a product of alienated activation of PIWIL2 gene, and has been found to be specifically and widely expressed in various types of cancers, including hematopoietic and solid ones. Current study aims to investigate whether a monoclonal antibody (mAb) to PL2L60 has both tumor-specific and broad-spectral properties, which can be used universally to treat various types of cancers. The expression of PL2L60 protein in the cell surface and cytoplasm were determined in a panel of human and mouse tumor cell lines by flow cytometry, immunofluorescent microscopy and Western Blotting. The apoptosis and the cell cycle arrest of the tumor cells treated with mAb KAO3 were evaluated by flow cytometry. The tumorigenesis of the mAb KAO3-pretreated tumor cells was determined by tumor incidence and tumor size, and the efficacy of mAb KAO3 treatment on tumor growth in tumors-bearing mice were kinetically evaluated. Complement-dependent cytotoxicity (CDC) assay was used to determine the capacity of mAb KAO3 to kill tumor cells. Treatment of human or mouse tumor cells from hematopoietic or solid tumors with mAb KAO3 at the time of inoculation efficiently inhibited tumorigenesis in the severe combined immunodeficient (SCID) mice. Moreover, injection of mAb KAO3 into established tumors significantly inhibited their growth, and prolonged survival of the tumor-bearing mice, including lymphoma, breast cancer, lung cancer and cervical cancer. The efficacy of mAb KAO3 treatment is likely associated with its binding to PL2L60 expressed on tumor cell surface, which may lead to cancer cell death through blocking cell cycling and/or activation of complement. In conclusion, we have identified a tumor-specific mAb to PL2L60 (KAO3), which may be used potentially to treat all the types of human cancers including from both hematopoietic and solid ones.

20.
Fish Shellfish Immunol ; 121: 322-331, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032680

RESUMO

All drugs that can penetrate the blood-brain barrier (BBB) may lead to mental state changes, including the widely used anti-infective drug sulfamethoxazole (SMZ). Herein, we investigated whether lycopene (LYC) could ameliorate SMZ-induced brain injury and the postulated mechanisms involved. A total of 120 grass carps were exposed under SMZ (0.3 µg/L, waterborne) or LYC (10 mg/kg fish weight, diet) or their combination for 30 days. Firstly, brain injury induced by SMZ exposure was suggested by the damage of BBB (decreases of Claudins, Occludin and Zonula Occludens), and the decrease of neurotransmitter activity (AChE). Through inducing oxidative stress (elevations of malondialdehyde and 8-hydroxy-2 deoxyguanosine, inhibition of glutathione), SMZ increased the intra-nuclear level of NF-κB and its target genes (TNF-α and interleukins), creating an inflammatory microenvironment. As a positive feed-back mechanism, apoptosis begins with activation of pro-death proteins (Bax/Bcl-2) and activation of caspases (caspase-9 and caspase-3). Meanwhile, a compensatory upregulation of constitutive Nrf2 and its downstream antioxidative gene expression (NAD(P)H Quinone Dehydrogenase 1 and Heme oxygenase 1) and accelerated autophagy (increases of autophagy-related genes and p62 inhibition) were activated as a defense mechanism. Intriguingly, under SMZ stress, LYC co-administration decreased NF-κB/apoptosis cascades and restored Nrf2/autophagy levels. The neuroprotective roles of LYC make this natural compound a valuable agent for prevention SMZ stress in environment. This study suggests that LYC might be developed as a potential candidate for alleviating environmental SMZ stress in aquaculture.


Assuntos
Apoptose , Lesões Encefálicas , Carpas , Licopeno/farmacologia , Estresse Oxidativo , Ração Animal/análise , Animais , Carpas/metabolismo , Dieta , Proteínas de Peixes/metabolismo , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neurotoxinas , Sulfametoxazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...